
Creating an Intranet Toolbox of Selective Oracle Metadata
John Charles Gober, Deborah Mullen, Jana Smith

Bureau of the Census, Demographic Surveys Methodology Division, Washington, DC

INTRODUCTION

The purpose of this paper is to demonstrate an
alternative method of allowing users to view the
attributes of their Oracle® Databases. This
application is useful for programmers and
developers who do not have access to Oracle
Designer or other similar applications which
allow visual representations of your databases.

Even though this application is fairly simple in
its appearance, it does give the user critical
information about their database tables,
variables, and indexes. By being able to cross
reference tables with variables, variables with
indexes, and indexes with tables this in turn will
allow the rapid development of programs and
applications which need to use these tables.

Because of the length of the code involved with
this application it will all appear at the end of
this paper.

ACCESSING THE ORACLE METADATA

Oracle, like SAS, keeps a wealth of overhead
information stored in its administrative tables.
These meta tables are analogous to the ones
found in the automatic SASHELP library. For
our intranet toolbox application we needed only
seven variables from five of these tables. These
variables were table_name, column_name,
constraint_type, data_type, data_length,
index_name, and column_position. The table
names can be viewed in the inserted code.

There were two methods that immediately came
to mind that would allowed us to extract the
information needed from these variables. The
first was to use a data step with the tables
referenced through a LIBNAME statement. The
LIBNAME in turn would be associated with the
Oracle access engine. The second method
would be to use PROC SQL. Even though the
second method was the least familiar with our
users this was the one that was chosen. The
primary reason being that much of our work is
done interactively through the display manager
and we have a bad habit of leaving our session

open all day long and many times into the night.
Forgetting to disassociate a LIBNAME can
cause grief among the database managers when it
comes time to do routine maintenance. PROC
SQL automatically breaks the connection to the
database at the termination of the procedure thus
eliminating future conflict. When using a
LIBNAME we must remember to also CLEAR
when we are done with our query.

The first set of SQL code in our application
(Section One) was developed to extract just the
names of our database tables, the variable names,
and their attributes. This gave us all of the
information for our initial set of pages. At this
point we could have just executed an ODS
HTML statement, run the data through a PROC
REPORT, made a few cosmetic changes, and
finally uploaded it to our server. A user could
now click on a database table and view the
variables and some variable attributes within the
table but could do no more.

In order to cross reference the variables back to
their respective tables and tables with their
indexes we needed a few more steps. A second
PROC SQL was needed to extract the index
names, indexed variables and their associated
tables (Section Two).

COMBINING THE INFORMATION

 The next step (Section Three) was to eliminate
tables in the database that the user would never
look at and to count the number of tables left.
These are the tables that the database
administrator would normally use but not us.
Tables that contain file sizes, extents, user and
system information, etc. No need to clutter the
screens with extraneous information. This is also
the section where we linked the index
information with the table and variable
information. This was also where we totaled and
sequenced the tables and variables and to make
sure that all fields were populated in order to
insure reliable links for our html pages.

CREATING THE HYPERLINKS

When SAS designed ODS HTML they opened
up a whole new avenue of expression for the
average SAS programmer. Without the need for
extensive training in html a user with very little
experience can create their own web pages
complete with frames, indexes, table of contents,
and bodies. And in combination with PROC
TEMPLATE and other procedures these web
pages can be customized with very little effort.
However all good things need help. ODS only
creates one way links from the table of contents
frame to the body frames. If you wish to create
links inside the body frames referencing other
body frames then you must create your own
hyperlinks to be inserted into your procedures to
be used by ODS.

The code to create the hyperlinks (Section Four)
looks slightly intimidating but it is only a series
of datasets that, when used in combination with
PROC FORMAT, create tables of sequential
page names or be use as targets for all of our
desired links. The need for this process is best
understood if viewed in context with the PROC
REPORT code while looking at the actual pages
that have been generated.

PROC TEMPLATE

With each licensed copy of SAS there are
supplied several basic templates that give the
user the ability to choose a predefined look and
feel to the html pages and contents. These
templates give the user a predefined starting
point when it comes to changing the look, feel,
and behavior of their pages. To view the code
for these templates the user needs only to go to
the Results Window, click on View, Templates,
sashelp.tmplmst. This application used the
DEFAULT template with only a few minor
changes.

 Not being totally familiar with PROC
TEMPLATE (Section Five) this was the most
difficult aspect of the application. However with
a little research and a few calls to our help desk it
was finally discovered that only minor changes
to the procedure were needed and SAS has done
an excellent job of making the editing of
templates quite easy. Even though the basic
changes worked, the appearance of the titles, the
fonts, the program names in the table of contents,
and the background colors needed to be changed.

PROC REPORT

There was only one reason that PROC REPORT
was selected for the visual representation for our
pages. This was the procedure used in the
example from the SAS Guide to the Output
Delivery System®®® and the PROC TEMPLATE
FAQ on the SAS Technical Support web pages.

This is where all of our efforts came together
(Section Six). Titles and footnotes were added
to our pages, hyperlinks applied, and columns
justified. Even a link back to our database main
menu selection screen was create so the user
could view other databases they had permission
to use.

CONCLUSION

 Data is of no use unless you know what it
contains. By creating this small application from
examples readily available in the SAS
community you can create an easy to use
interactive table/variable cross reference table
that can be used to visually access not only your
Oracle databases but also your SAS libraries and
other data structures.

CREDITS AND ACKNOWLEGEMENTS

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Oracle is a registered trademark, and ConText,
Oracle Alliance and Oracle8 are trademarks or
registered trademarks of Oracle Corporation.

CONTACT INFORMATION

Questions and comments concerning this paper
can be directed to:

 john.charles.gober@census.gov
deborah.m.mullen@census.gov
jana.l.smith@census.gov
Bureau of the Census
FOB3 MS8700
Washington DC 20233-8700

*CREATING AN INTRANET METATABLE;
*Code has been intentionally reformatted to fit the page;

libname wk '/work';

*SECTION ONE;
proc sql;
connect to oracle(user=xx password=xx
schema=xx path='mydatabase');
create table wk.dbtabvar as
select * from connection to oracle
(select distinct acc.table_name,
acc.column_name, ac.constraint_type,
atc.data_type, atc.data_length from
 all_constraints ac,
 all_cons_columns acc,
 all_tab_columns atc,
 dba_tables dbt
 where ac.constraint_name =
acc.constraint_name and
 atc.column_name =
acc.column_name and
 atc.table_name =
acc.table_name and
 atc.table_name =
dbt.table_name);
run;

*SECTION TWO;
proc sql;
connect to oracle(user=xx password=xx
schema=xx path='mydatabase');
create table wk.allindexes as
select * from connection to oracle
(select distinct ind.index_name,
ind.table_name, ind.column_name,
ind.column_position
 fromall_ind_columns ind);
run;

*SECTION THREE;
data wk.sampts;
 set wk.dbtabvar(where=(not
indexc(table_name,'$','#')));
 by table_name column_name;
 if constraint_type not in ('P','R')
then constraint_type = ' ';
 if last.column_name then output;
run;

proc sort data=wk.sampts out=wk.sampts;
by table_name ; run;

proc sort data=wk.allindexes
out=wk.allindexes;
 by table_name column_name;
 where not
(indexc(table_name,'$','#')); run;

data wk.sampts(drop=_idx);
 retain _idx 0;
 merge wk.sampts(in=in1)
 wk.allindexes(in=in2
 keep=index_name table_name);
 by table_name ;
 _idx + 1;
 if in1;
 if index_name = ' ' then
 index_name='noindex' || _idx;
run;

proc sort data=wk.allindexes
out=wk.allindexes;
 by table_name index_name
column_position column_name; run;

proc sort data=wk.sampts out=wk.samptsa;
 by table_name column_name; run;

data wk.samptsa;
 set wk.samptsa end=last;
 by table_name column_name;
 table_name2 = table_name;
 if first.table_name then tottables + 1;
 if last then call
 symput('tottables',tottables);
 if first.column_name; run;

proc sort data=wk.sampts(keep=column_name
table_name index_name) out=wk.samptsb
nodupkey;
 by column_name table_name; run;

*SECTION FOUR;
data makefmt;
 retain counter &tottables;
 set wk.samptsb end=last;
 by column_name;
 if first.column_name then
 do;
 fmtname = '$varfmt';
 start = column_name;
 label = 'samptsbody'||put(counter,4.);
 counter + 1;
 output;
 end;
 if last then call
 symput('startindx',counter);
run;

proc format cntlin=makefmt; run;

data makefmt2;
 retain counter 0; length label $45;
 set wk.samptsa;
 by table_name;
 if first.table_name then
 do;
 fmtname = '$dbfmt';
 start = table_name;
 if counter=0 then label='samptsbody';
 else
label='samptsbody'||put(counter,4.);
 counter + 1;
 output;
 end;
run;

proc format cntlin=makefmt2; run;

data makefmt2b;
 retain counter (&startindx);
 length label $100 start $50;
 set wk.samptsa end=last;
 by table_name;
 if first.table_name then
 do;
 fmtname = '$db2fmt';
 start = table_name;
 label = '<A
HREF="http://mydir/myfiles/samptsbody'

||trim(left(counter))|| '.htm">indexes
';
 if substr(index_name,1,7) ne 'noindex'
 then
 do;
 counter + 1;
 output;
 end;
 end;
 if first.table_name and
 substr(index_name,1,7) = 'noindex' then
 do;
 fmtname = '$db2fmt';
 start = table_name;
 label = ' ';
 output;
 end;
run;

proc format cntlin=makefmt2b; run;

proc sort data=wk.samptsa out=makefmt3
nodupkey ;
by table_name index_name; run;

data makefmt3;
 retain counter &startindx;
 length label $15 start $50end $50;
 set makefmt3 end=last;
 by table_name index_name;
 fmtname = '$idxfmt';
 start = index_name;
 end = index_name;
 label = 'samptsbody'||put(counter,4.);
 if substr(index_name,1,7) = 'noindex'
 and substr(lag(index_name),1,7) ne
 'noindex' then counter = counter - 1;
 if substr(index_name,1,7) ne 'noindex'
 then output;
 if last.table_name then
 do;
 counter + 1;
 end;
run;

proc format cntlin=makefmt3; run;

proc sort
data=wk.samptsa(keep=index_name)
out=makefmt4 nodupkey ;
 by index_name;
 where substr(index_name,1,7) ne
'noindex';
run;

data makefmt4;
 length label $15;
 length start $50;
 length end $50;
 set makefmt4 end=last;
 fmtname = '$keyfmt';
 start = index_name;
 end = index_name;
 label = 'YES';
 output;
 if last then
 do;
 start = 'other';
 end = 'other';
 label = ' ';

 output;
 end;
run;

proc format cntlin=makefmt4; run;

proc sort data=wk.sampts out=makefmt5
nodupkey;
 by index_name; run;

proc sort data=makefmt5;
 by table_name; run;

data makefmt5b;
 length start $50;
 length label $20;
 retain counter 0;
 set makefmt5 end=last;
 by table_name;
 fmtname = '$tabfmt';
 start = index_name;
 if counter = 0 then label =
'samptsbody';
 else
 label =
'samptsbody'||put(counter,4.);
 output;
 if last.table_name then
 do;
 * if substr(index_name,1,7) ne
'noindex' then counter + 1;
 counter + 1;
 end;
run;

proc format cntlin=makefmt5b; run;

*SECTION FIVE;
proc template;
 edit styles.default as styles.test;
 style contentfolder / LISTENTRYANCHOR =
ON;
 style color_list / 'BGA1' =
CXE5C76B;
 style colors / 'CONTENTBG' =
COLOR_LIST('BGA1');
 style colors / 'DOCBG' =
COLOR_LIST('BGA1');
 style confolderfg / background =
colors('contentbg');
 style text / 'CONTENT TITLE'
= 'DSMD INTRANET TOOLBOX';
style table / cellpadding=0
cellspacing=0;
END;
RUN;

ods listing close;
ods noresults;
ods html file='samptsbody.htm'
 style=styles.test
 contents='samptscontents.htm'
 frame='samptsframe.htm'
path='/mydir/myfiles'(url=none)
newfile=page;

options nobyline;

*SECTION SIX;
title1 "MY Database";
title2 "Column Names for Table";

title3 '#byval(table_name)';

footnote1 'Developed and Shared by Your
Friendly Staff at CENSUS';
ods proclabel 'MY Database';

proc report data=wk.samptsa
 nowd contents=''
style(column)=[font_face=Courier
font_size=2 asis=on]
style(lines)={protectspecialchars=off};
 by table_name ;
 column /*index_name*/ constraint_type
column_name data_type data_length
table_name2;
 define table_name2 /noprint;
 define column_name / "Column" display
format=$30. center;
 define constraint_type / "Key Type"
display format=$30. center;
 define data_type / "Format" display
format=$12. center;
 define data_length / "Length" display
format=5. center;
 compute before _page_ / left;
 line ' ';
 line ' ';
 line table_name2 $db2fmt. ;
 line ' ';
 endcomp;
 compute after _page_ / left;
 line ' ';
 line ' ';
 endcomp;
 compute column_name;
 call
define(_col_,"URLBP",compress(trim(put(co
lumn_name,$varfmt.)))||'.htm') ;
 endcomp;
 compute index_name;
 call
define(_col_,"URLBP",compress(trim(put(in
dex_name,$idxfmt.)))||'.htm') ;
 endcomp;
 label table_name = 'TABLE';
run;

ods proclabel 'Variables e1sampts';
title1 "Tables Containing the Variable";
title2 '#byval(column_name)';
footnote1 'Developed and Shared by Your
Friendly Staff at CENSUS';

proc report data=wk.samptsb
 (keep=table_name
column_name) nowd contents=''
style(column)=[font_face=Courier
font_size=2 asis=on];
 by column_name ;
 column table_name;
 define table_name /'Tables' left;
 compute table_name;

 call
define(_col_,"URLBP",compress(trim(put(ta
ble_name,$dbfmt.)))||'.htm');
 endcomp;
 label column_name = 'VAR';
run;

ods proclabel 'Indexes e1sampts';
title1 "Indexes for Table";
title2 '#byval(table_name)';
footnote1 'Developed and Shared by Your
Friendly Staff at CENSUS';
proc report data=wk.allindexes
 (keep=index_name table_name
column_name column_position) nowd
contents=''
style(column)=[font_face=Courier
font_size=2 asis=on];
 by table_name ;
 column index_name column_position
column_name ;
 define index_name / group 'Index Name'
left;
 define column_position / 'Key Order'
left;
 define column_name /'Column ' left;
 compute index_name;
 call
define(_col_,"URLBP",compress(trim(put(in
dex_name,$tabfmt.)))||'.htm') ;
 endcomp;
 run;

options byline;
title2;
ods html close; ods listing; ods results;

filename cont '/mywebpages/
mydatabase/samptscontents.htm' lrecl=255;
filename temp1 temp lrecl=255;

data _null_;
 infile cont pad missover;
 input @001 col1_5 $char5.
 @001 col1_255 $char255.;
 file temp1;
 put col1_255;
 if col1_5 = '<BODY' then
 do;
 put '<a target=_parent
href="http://mywebpages/DB_MAIN_PAGE.html
">MAIN MENU';
 put '
';
 end;
run;

data _null_;
 infile temp1 pad missover;
 input @001 col1_255 $char255.;
 file cont;
 put col1_255;
run;

Figure 1 - Click on Table= to bring up the column listing.

Figure 2 - Click on 'indexes' to bring up the index listing. Then click on the ‘Index Name’ to return
to the Column Listing. Not shown is the variables by database cross reference page.

